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We compare eigenvalue densities of Wigner random matrices whose elements are independent identically
distributed random numbers with a Lévy distribution and maximally random matrices with a rotationally
invariant measure exhibiting a power law spectrum given by stable laws of free random variables. We compute
the eigenvalue density of Wigner-Lévy matrices using �and correcting� the method by Bouchaud and Cizeau,
and of free random Lévy �FRL� rotationally invariant matrices by adapting results of free probability calculus.
We compare the two types of eigenvalue spectra. Both ensembles are spectrally stable with respect to the
matrix addition. The discussed ensemble of FRL matrices is maximally random in the sense that it maximizes
Shannon’s entropy. We find a perfect agreement between the numerically sampled spectra and the analytical
results already for matrices of dimension N=100. The numerical spectra show very weak dependence on the
matrix size N as can be noticed by comparing spectra for N=400. After a pertinent rescaling, spectra of
Wigner-Lévy matrices and of symmetric FRL matrices have the same tail behavior. As we discuss towards the
end of the paper the correlations of large eigenvalues in the two ensembles are, however, different. We
illustrate the relation between the two types of stability and show that the addition of many randomly rotated
Wigner-Lévy matrices leads by a matrix central limit theorem to FRL spectra, providing an explicit realization
of the maximal randomness principle.
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I. INTRODUCTION

Applications of random matrix theory cover many
branches of physics and cross-disciplinary fields �1� involv-
ing multivariate analysis of large and noisy data sets �2�. The
standard random matrix formulation belongs to the Gaussian
basin, with a measure that is Gaussian or polynomial with
finite second moment. The ensuing macroscopic spectral dis-
tribution is localized with finite supports on the real axis. The
canonical distribution for a Gaussian measure is Wigner’s
semicircle.

The class of stable �Lévy� distributions �3� is, however,
much larger �the Gaussian class represents only one fixed
point in the stability basin of the Lévy class�, and one is
tempted to ask why the theory of random Lévy matrices is
not so well-established. The case of Lévy randomness is far
from being academic, and many distributions in physics and
outside �finance, networks� exhibit powerlike behavior re-
ferred to as fat or heavy tails �4�.

One of the chief reasons for why the theory of random
Lévy matrices is not yet well-understood is the technical
difficulty inherent to these distributions. First, even for one-
dimensional stable distributions, the explicit form of the
probability distribution functions �PDFs� is known analyti-
cally only in a few cases �5,6�. Second, Lévy distributions
have divergent moments, and the finiteness of the second
moment �condition for the Gaussian stability class� is usually
a key for many of the techniques established in random ma-
trix theory. Third, numerical studies involving powerlike be-
havior on infinite supports require enormous statistics and
are very sensitive to systematic errors.

In 1994, Bouchaud and Cizeau �7� �BC� considered large
N�N random symmetric matrices with entries sampled from

one-dimensional, stable distributions. In the large N limit
they obtained analytical equations for the entries of the re-
solvent, and then checked their predictions for the spectra
using numerically generated spectra by random sampling.
The agreement was fair, although not perfect. Contrary to the
standard Gaussian-like ensembles, the measure in the BC
approach was not rotationally invariant.

In 2002, following the work in �8�, we suggested another
Lévy-type ensemble �9� �hereafter free random Lévy �FRL��.
By construction its measure is rotationally invariant. The av-
erage spectral distribution in this ensemble is stable under
the matrix convolution of two independent but identical en-
sembles. It is similar to the stability property of one-
dimensional Lévy distributions. The measure is nonanalytic
in the matrix H and universal at large H with a potential
V�H�� ln H2. This weak logarithmic rise in the asymptotic
potential is at the origin of the long tail in the eigenvalue
spectra.

The present work will compare the Wigner-Lévy �WL�
and FRL results as advertised in �10�. In Sec. II we reanalyze
and correct the original arguments for the resolvent presented
in �7�. Our integral equations for the resolvent and spectral
density are different from the ones in �7�. We carry explicit
analytical transformations and expansions to provide insights
to the spectrum. We show that there is a perfect agreement
between the analytical and numerical results obtained by
sampling large Lévy matrices. We also discuss the relation of
ours and BC’s results. In Sec. III we recall the key concepts
behind FRL ensembles. In large N the resolvent obeys a
simple analytic equation. The resulting spectra are compared
to the spectra following from the corrected BC analysis. The
WL and FRL matrices represent two types of stability under
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matrix convolution. In both cases we have a power behavior
in the tails of the spectrum. By a pertinent rescaling we may
in fact enforce the same tail behavior and compare the spec-
tra. The observed differences disappear in the Gauss limit
and become more pronounced in the Cauchy limit. In Sec.
IV we explain the relation between the two types of stability
on a simple example: we construct sums of WL matrices
rotated by random O�N� matrices and show that the spectrum
of these sums converges by a matrix central limit theorem to
the pertinent symmetric FRL spectrum. Our conclusions are
in Sec. V.

II. WIGNER-LÉVY MATRICES

A. Definition of ensemble

In a pioneering study on random Lévy matrices,
Bouchaud and Cizeau �7� discussed a Wigner ensemble of
N�N real symmetric random matrices with elements being
independent identically distributed �IID� random variables:
with probability density function following a Lévy distribu-
tion P�x��N1/�L�

C,��N1/�x�, with � being the stability index,
� the asymmetry parameter, and C the range of the distribu-
tion �see below�. We shall call these matrices Wigner-Lévy
�WL� or Bouchaud-Cizeau �BC� matrices. The probability
measure for the ensemble of such matrices is given by

d�WL�H� = �
i�j

P�Hij�dHij . �1�

The scaling factor N1/� in the PDF makes the limiting eigen-
value density independent of the matrix size N when N→�.
Alternatively one can think of the matrix elements Hij as if
they were calculated as Hij =hij /N1/� with hij being IID ran-
dom numbers independent of N: p�x�=L�

C,��x�.
Lévy distributions are notoriously hard to write explicitly

�except in a few cases�, but their characteristic functions are
more user friendly �5�

L�
C,��x� =

1

2�
� dkL̂�k�eikx, �2�

where the characteristic function is given by

log L̂�k� = − C	k	��1 + i� sgn�k�tan���/2�� . �3�

The parameters �, �, and C are related to the asymptotic
behavior of L�

C,��x�

lim
x→±�

L�
C,��x� = 	���

C�1 ± ��
	x	�+1 �4�

with the �-dependent parameter 	��� given by

	��� = 
�1 + ��sin
��

2
� . �5�

Here � is the stability index defined in the interval �0, 2�,
−1���1 measures the asymmetry of the distribution, and
the range C�0 is the analog of the variance, in a sense that
a typical value of x is C1/�. A standard choice corresponds to
C=1.

We shall consider here only the stability index in the
range �1, 2�, although as will be shown later, results obtained
in this range seem to be valid also for �=1. We also assume
that all random variables have zero mean.

B. Determination of eigenvalue density

A method of calculating the eigenvalue density of the
Wigner-Lévy matrices was invented by Bouchaud and
Cizeau �7�. Let us in this section briefly recall the main steps
of the method. It is convenient to introduce the resolvent,
also called the Green’s function:

g�z� =
1

N
�Tr G�z� , �6�

where elements of the matrix G�z� are

Gij�z� = �z − H�ij
−1 �7�

and the averaging is carried out using the measure �1�. The
resolvent contains the same information as the eigenvalue
density ���. Indeed if one approaches the real axis one finds
that ���=−1/� lim�→0+ Im g�+ i��. This is how one usu-
ally calculates ��� from g�z�. For the Wigner-Lévy en-
semble, where individual matrix elements have large scale-
free statistical fluctuations, a slightly different method turns
out to be more practical—a method which allows one to
avoid problems in taking the double limit �first N→� and
�→0+� in which the fluctuations are suppressed in an uncon-
trollable way in the presence of an imaginary part of z. In the
BC method z is kept on the real axis and fluctuations are not
suppressed, so one can safely take the large N limit.

The method goes as follows �7�. One first generates a
symmetric N�N random matrix H using the measure �1�
and then by inverting H−z one calculates the resolvent G�z�
�Eq. �7��. Next one adds a new row �and a symmetric col-
umn� of independent numbers identically distributed as those
in the old matrix H. One obtains a new �N+1�� �N+1� ma-
trix H+1, where +1 emphasizes that it has one more row and
one more column than H. It is convenient to number ele-
ments of the original matrix Hij by indices running over the
range i , j=1, . . . ,N, and assign the index 0 to the new row
and the new column so that now indices of H+1 run over the
range 0 , . . . ,N. If one inverts the matrix H+1−z one obtains a
new �N+1�� �N+1� resolvent G+1�z�. One can show that it
obeys a recursive relation �7�

z −
1

G00
+1�z�

= H00 + �
i,j

N

H0iH0jGij�z� =
h00

N1/� + �
i,j

N
h0ih0jGij�z�

N2/� ,

�8�

which relates the element G00
+1�z� of the �N+1�� �N+1� re-

solvent to the elements of the old N�N resolvent G�z�. One
can also derive similar equations for off-diagonal elements of
G+1�z�
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G0j
+1�z�

G00
+1�z�

= �
i

N
h0iGij�z�

N2/� . �9�

The difference between the probability distribution of the
elements of G+1�z� and of G�z� disappears in the limit N
→�. The diagonal elements of the matrix G+1�z� are identi-
cally distributed as the diagonal elements of the matrix G�z�.
The same holds for off-diagonal ones. Moreover, in this limit
all elements of the G matrix become independent of each
other. In particular all diagonal elements of G�z� become
independent identically distributed �IID� random variables as
N→�. One can use Eqs. �8� and �9� to derive self-
consistency equations for the probability density function
�PDF� for diagonal and the PDF for off-diagonal elements.
We are here primarily interested in the distribution of the
diagonal elements, as we shall see below. The self-
consistency equation for the probability distribution of diag-
onal elements follows from Eq. �8� and is independent of the
distribution of the off-diagonal elements. This can be seen as
follows. Let us first define after Bouchaud and Cizeau �7� a
quantity:

S0�z� = z −
1

G00
+1�z�

. �10�

It is merely a convenient change of variables suited to the
left-hand side of Eq. �8�. It is clear that if one determines the
PDF for S=S0�z�, one will also be able to determine the PDF
for G=G00

+1�z� since the two PDFs can be obtained from each
other by the change of variables �10�:

PG�G� =
1

G2 PS
z −
1

G
� , �11�

where PG and PS are PDFs for G00
+1�z� and S0�z�, respectively.

Since the probability distribution PG is identical for all diag-
onal elements of G, it remains to determine the probability
distribution PS for the quantity S0�z�.

Let us sketch how to do that. First observe that the first
term in Eq. �8� can be neglected at large N, so the equation
assumes the form

S0�z� = �
i

N
h0i

2 Gii�z�
N2/� + �

i�j

h0ih0jGij�z�
N2/� . �12�

Now observe that by construction h0i are independent of
Gij�z�. We shall now show that for large N the first term in
Eq. �12� dominates over the second one. We shall modify
here the argument used in �7�, where it was assumed that the
off-diagonal elements GijN�z� , i� j are suppressed by a fac-
tor 1 /N1/� with respect to the diagonal elements. Instead we
note that by construction the quantities Gij�z� are statistically
independent of h0i , i=0, . . . ,N. Since we shall only be inter-
ested by the diagonal elements of the resolvent matrix, we
may replace the contribution of the off-diagonal elements
h0ih0jGij�z� , i� j by their averaged values. As a result, the
contribution of the off-diagonal terms averages out. Note that
this is also true in the Gaussian limit �=2 where following
�7� we may replace all elements of Eq. �12� by their respec-

tive averages. Taking this into account and omitting the sub-
leading contribution H00, we get

S0�z� = �
i

N
h0i

2 Gii�z�
N2/� . �13�

Thus the problem was simplified to an equation where the
left-hand side �S0=z−1/G00

+1� and the right-hand side depend
only on the diagonal elements of the G-matrix, which as we
mentioned before, are identically distributed in the limit N
→�. Using Eq. �13� one can derive a self-consistency equa-
tion for the probability density function �PDF� PG for diag-
onal elements of the matrix G.

C. Generalized central limit theorem

To proceed further we apply with Bouchaud and Cizeau
�7� the generalized central limit theorem to derive the uni-
versal behavior of the sum on the right-hand side of Eq. �13�
in the limit N→�:

�1� If the h0i’s are sampled from the Lévy distribution
L�

C,�, the squares ti=h0i
2 for large ti are distributed solely

along the positive real axis, with a heavy tail distribution:

� 	���
Cdti

ti
1+�/2 �14�

irrespective of �. The sum

�
i

N
ti

N2/� �15�

is distributed following L�/2
C�,1�ti�. The range parameters C and

C� are related by Eq. �3�,

2C�	��/2� = C	��� . �16�

The factor 2 on the left-hand side corresponds to the sum
�1+��+ �1−�� appearing as a contribution from positive and
negative values of the original distribution of h0i. This rela-
tion is important when comparing to the numerical results
below where C=1 is used. From now on �and to simplify the
equations� we assume instead that C�=1.

�2� By virtue of the central limit theorem the following
sum

�
i

N
Gii�z�ti

N2/� �17�

of IID heavy tailed numbers ti is for Gii�z�=O�N0� and N
→� Lévy distributed with the PDF: L�/2

C�z�,��z�, which has the
stability index � /2 and the effective range C�z� and the
asymmetry parameter ��z� calculated from the equations

C�z� =
1

N
�

i

N

	Gii�z�	�/2 �18�

and
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��z� =

1

N
�

i

N

	Gii�z�	�/2 sgn�Gii�z��

1

N
�

i

N

	Gii�z�	�/2

, �19�

which follow from the composition rules for the tail ampli-
tudes of IID heavy tailed numbers ti defined above.

D. Integral equations

We saw in the previous section that the generalized cen-
tral limit theorem implies for large N that the “self-energy”
S=S0�z� is distributed according to the Lévy law PS�S�
=L�/2

C�z�,��z��S� with the stability index � /2 being one-half of
the stability index of the Lévy law governing the distribution
of individual elements of the matrix H, and with the effective
range parameter C�z� and the asymmetry parameter ��z�
which can be calculated from Eqs. �18� and �19�, respec-
tively. One should note that the effective parameters
C�z� ,��z� of the distribution PS�S� are calculated for C=1
and that they are independent of � of the probability distri-
bution: L�

C,��hij� of the H-matrix elements.
The sums on the right hand side of Eqs. �18� and �19� for

C�z� and ��z� have a common form 1
N�i f(Gii�z�). Since in

the limit N→�, the diagonal elements become IID, the sums
can be substituted by integrals over the probability density
for Gii:

1

N
�

i

N

�f„Gii�z�… =� dGPG�G�f�G� =� dG

G2 PS
z −
1

G
� f�G� ,

�20�

where in the second step we used Eq. �11�. Since the distri-
bution PS�S�=L�/2

C�z�,��z��S� is known up to the values of two
effective parameters C�z� and ��z� Eqs. �18� and �19� can be
written as self-consistency relations for ��z� and C�z�:

C�z� =
W

−�

� dG

G2 	G	�/2L�/2
C�z�,��z��z − 1/G� ,

��z� =
W

−�

� dG

G2 	G	�/2 sgn�G�L�/2
C�z�,��z��z − 1/G�

W
−�

� dG

G2 	G	�/2L�/2
C�z�,��z��z − 1/G�

. �21�

The symbol W stands for principal value of the integral. No-
tice here the difference between our second equation and that
in �7�. In addition to �7� we also note that the resolvent takes
the form

g�z� =
1

N
�

i

Gii�z� → g�z� =
W

−�

� dG

G2 GL�/2
C�z�,��z��z − 1/G� .

�22�

The integrals �21� and �22� can be rewritten using the new
integration variable x=1/G as

C�z� = �
−�

+�

dx	x	−�/2L�/2
C�z�,��z��z − x� ,

��z� =

�
−�

+�

dx sgn�x�	x	−�/2L�/2
C�z�,��z��z − x�

�
−�

+�

dx	x	−�/2L�/2
C�z�,��z��z − x�

, �23�

and

g�z� =
W

−�

� dx

x
L�/2

C�z�,��z��z − x� . �24�

All the steps above require both z and Gii�z� to be strictly
real. The argument cannot be extended to the complex z
plane. So all integrals above should be interpreted as princi-
pal value integrals, wherever it is necessary. Since ��2 all
integrals in Eq. �23� are convergent also in the usual sense.

The equation for g�z� can be rewritten as

g�z� =
W

−�

� dx

z − x
L�/2

C�z�,��z��x� . �25�

Notice the nontrivial dependence on z in the parameters of
the Lévy distribution. The above equation can be a source of
confusion, since its structure resembles another representa-
tion of g�z�,

g�z� =
W

−�

� d

z − 
��� , �26�

which superficially looks as if one could identify in Eq. �25�
x and  and L�/2

C�z�,��z��x� with ���. This is not the case, and
one should instead invert Eq. �25� using the inverse Hilbert
transform:

��� =
1

�2W
−�

� dz

z − 
g�z� . �27�

In other words, one first has to reconstruct numerically the
real part of the resolvent, and only then compute numerically
the spectral function ���, using the “dispersive relation”
�27�. This is a difficult and rather subtle procedure. In the
next section we give some analytical insights to the integral
equations that would help solve them and extract the spectral
function.

E. Analytical properties useful for numerics

One cannot do the integrals from the previous section
analytically. As mentioned, one cannot even write down an
explicit form of the Lévy distribution. It is a great numerical
challenge to solve the problem numerically even if all the
expressions are given. One realizes that already when one
tries to compute the Fourier integral �2� of the characteristic
function since one immediately sees that the integrand in the
form �2� is a strongly oscillating function making the numer-
ics unstable. Fortunately using the power of the complex
analysis one can change this integral to a form which is
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numerically stable. So in this section we present some ana-
lytic tricks which allow one to reduce the problem of com-
puting the eigenvalue density as formulated in the previous
section to a form which is well-suited to the numerical com-
putation.

To simplify Eq. �23� we proceed in steps. First, we make
use of the Lévy distribution through its characteristic

L�/2
C,��x� =

1

2�
�

−�

�

dkeikxe−C	k	�/2�1+i� sgn�k��, �28�

with �=� tan��� /4�. By rescaling through

k = C−2/�k�,

x = C2/�x�,

z = C2/�z�, �29�

we can factor out the range L�/2
C,��x�=C−2/�L�/2

1,��x��. Second,
we make use of the following integrals:

W
−�

� dx

z − x
eikx = − 2ieikz sgn k ,

�
0

�

dx�
cos�k�x��

x��/2 = 	k�	�/2−1
�1 − �/2�sin���/4� ,

�
0

�

dx�
sin�k�x��

x��/2 = 	k�	�/2−1 sgn�k��
�1 − �/2�cos���/4� .

�30�

Last, we make use of the change of variables p=k��/2. With
this in mind, we obtain

C2�z�� =
4

��


1 −

�

2
�sin
��

4
�

��
0

�

dp cos�p2/�z� − ��z��p�e−p, �31�

��z�� =

�
0

�

dp sin�p2/�z� − ��z��p�e−p

�
0

�

dp cos�p2/�z� − ��z��p�e−p

, �32�

with ��z��=tan��� /4���z��. For every z� we can iteratively
solve the equation for ��z��, then we determine C�z�� and use
z=C2/��z��z� to express everything in terms of z. These
transformations solve Eq. �23�. Using the same method we
rewrite the equation for g�z� as

ḡ�z�� = C�z��2/�g�z�

=
2

�
�

0

�

dpp�2−��/� sin�p2/�z� − p��z���e−p. �33�

These integral forms are useful to study the small-z� limit.
In this case ��z�� is an antisymmetric function of z� and has

an expansion in powers of z�. Using ��z��=k1z�+O�z�3� we
can recursively obtain the coefficients of this expansion. The
first term is k1=
�1+2/�� /2. Similarly C�z�� is a symmetric
function in z�,

C2�z�� =
4

��


1 −

�

2
�sin
��

4
� + O�z�2� . �34�

For 	z�	 large �z�→ ±�� a different approach is needed. In
this case we follow Nolan �11� and treat the two integrals
�numerator and denominator� of Eq. �32� together, i.e., we
consider the integral

�
0

�

dpe−h�p�, �35�

where

h�p� = �1 − i��p + iz�p2/�. �36�

Nolan’s idea is to close the contour of integration in the
complex p plane in the following way: at p→� we add an
arc and afterwards continue until p=0 along the line where
Im h�p�=0. Using the parametrization p=rei� we get the
parametric equation for r��� along this line, valid for z��0

r��� = � sin��0 − ��

z� cos��0�cos
 2

�
���

�/�2−��

. �37�

The angle � for the curve we need ���1� is bounded be-
tween �0=arctan���z���, where r=0 and −�1=−�� /4, where
cos� 2

��� is zero. Let us now introduce a new variable �
through �=�0−� and 0����0+�1. In this range we have

V��� = � sin���

cos��0�cos� 2

�
�� − �0���

�/�2−��

,

Re h��� = 
 1

z�
��/�2−��

V���
cos
2 − �

�
� −

2

�
�0�

cos��0�cos� 2

�
�� − �0�� .

�38�

After some manipulations we obtain

� sin�p2/�z� − ��z��p�e−p

= �
0

�0+�1

d�
 1

z�
��/�2−��

V���e−Re h���

�� 2

2 − �

cos�2 − �

�
�� − �0��

cos� 2

�
�� − �0�� −

�

2 − �

sin �0

sin � � ,
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� cos�p2/�z� − ��z��p�e−p

= �
0

�0+�1

d�
 1

z�
��/�2−��

V���e−Re h���

�� 2

2 − �

sin�2 − �

�
�� − �0��

cos� 2

�
�� − �0�� +

�

2 − �

cos �0

sin � � .

�39�

The resulting integrals look complicated, however, they
contain both the small-z� and the large-z� asymptotics. For
z�→0 we have �=z�p2/�−1, which reproduces the small-z�
expansion presented above. For z�→� we have �=�0+�1
−u /z��/2. Note that in this limit

cos
 2

�
�� − �0�� = sin
 2

�

u

z��/2� �40�

and the z� dependence in Re h��� vanishes in leading order.
The large-z� asymptotics require some work. For the lead-

ing orders we have

� sin�p2/�z� − ��z��p�e−p � 
�1 + �/2�sin �1�z��−�/2,

� cos�p2/�z� − ��z��p�e−p � 
�1 + �/2�cos �1�z��−�/2.

�41�

Thus for z�→� we have

��z�� = tan��1� + O�1/z��/2� �42�

and

C�z�� = z�−�/4�1 + O�1/z��/2�� ,

z = �z��1 + O�1/z��/2�� . �43�

All the formulas above apply to the case z��0. One can also
derive similar formulas for z��0, it is, however, more prac-
tical to use the symmetry properties of the functions C�z��
and ��z��.

As a final check let us compute ḡ�z��. A rerun of the
above transformations on the integrals give

ḡ�z�� =
2

2 − �
�

0

�0+�1

d�
 1

z�
�2/�2−��

V���2/�e−Re h���

�� 2

�

1

cos� 2

�
�� − �0�� +

sin
2 − �

�
� −

2

�
�0�

sin � � .

�44�

Notice that both asymptotics follow from this representation.
For z�→� we have ḡ�z��=1/z�+¯, which implies g�z�

=1/z+¯. This can be viewed as a check of the correct nor-
malization of the eigenvalue density distribution.

F. Numerical comparison

In this section we show perfect agreement between the
theoretical analysis for the eigenvalue distribution �27� and
the numerically generated eigenvalue distribution. The latter
is obtained by diagonalizing N�N random Lévy matrices
sampled using the measure �1�. The former was generated by
calculating numerically g�z� as detailed above. We per-
formed numerically the inverse Cauchy transform �27�. It is
important to note that the integral transforms entering into
the definition of the eigenvalue density ��� in Eq. �27� con-
verge slowly for z→�. For that, we have used the
asymptotic expansion of g�z� to perform the large-z part of
the integrals.

As noted above, all the above analytical results were ob-
tained using a specific choice of the scale factor �16�. The
comparison with the numerically generated eigenvalue dis-
tribution generated using L�

1,0 distribution requires rescaling
through →� and ���→��� /� with

� =�
�1 + ��cos
��

4
�



1 +
�

2
� �

1/�

. �45�

Below we show a sequence of results for �=1.95, 1.75, 1.50,
1.25, and 1.00 with this rescaling �see Figs. 1–5�. The com-
parison is for high statistics 400�400 samples �gray�. We
have checked that the convergence is good already for 100
�100 samples, with no significant difference between N
=100, 200, and 400. The numerical results are also not sen-
sitive to the choice ��0. The agreement between the results
following from the integral equations and the numerically
generated spectra is perfect. This is true even for �=1,
where in principle the arguments used in the derivation may
not be valid.

G. Numerical observation

In the mean-field approximation �7� one can assume that
there are no correlations between large eigenvalues of the
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FIG. 1. Theoretical �black� and numerical �gray� eigenvalue dis-
tributions for �=1.95.
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Wigner-Lévy random matrix. In this case the eigenvalue den-
sity takes the form

�̂��� = L�/2
C��,����� . �46�

It is natural to ask how good this mean-field approximation
is. This can be done by comparing the mean-field eigenvalue
distribution �̂�� �Eq. �46�� to the eigenvalue distribution
��� calculated by the inverse Hilbert transform �27� of the
resolvent g�z� �Eq. �25�� as we did in the previous section.
We made this comparison numerically. The result of this nu-
merical experiment was that within the numerical accuracy
which we achieved the two curves representing �̂�� and
��� lay on top of each other in the whole studied range of .
Since our numerical codes are written in MATHEMATICA we
could push the numerical accuracy very far, being only lim-
ited by the execution time of the code. We have not seen any
sign of deviation between the shapes of the two curves �12�.
This provides us with strong numerical evidence that the
mean-field argument �7� gives an exact result but so far we
have not managed to prove it. The value of the eigenvalue
density �̂��0� for =0 can be calculated analytically for the
mean-field density �46�. Rescaling the density �̂���
→ �̂���� /� by the factor � �Eq. �45�� we eventually obtain

�̂��0� =

�1 + 2/��

�


�1 + �/2�2


�1 + �� �1/�

. �47�

We draw this function in Fig. 6. In the same figure we also
show points representing numerically evaluated values of the
corresponding density ���0� �Eq. �27�� at some values of �.
Within the numerical accuracy ���0� and �̂��0� assume the
same values.

The physical meaning of the mean-field argument is that
indeed one can think of the large eigenvalues as independent
of each other. A similar observation has been made recently
�13�. The mathematical meaning of the mean-field argument
is more complex as we shall discuss below.

Let us for brevity denote the function L�/2
C�z�,��z��x�, which

is a function of two real arguments, by f�z ,x��L�/2
C�z�,��z��x�.

Equation �25� can be now written as

g�z� =
W

−�

�

dx
f�z,x�
z − x

�48�

and Eq. �27� as

��� =
1

�2W
−�

�

dz
g�z�
z − 

. �49�

When we insert Eq. �48� into the last equation we have
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FIG. 2. Theoretical �black� and numerical �gray� eigenvalue dis-
tribution for �=1.75.
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FIG. 3. Theoretical �black� and numerical �gray� eigenvalue dis-
tribution for �=1.50.
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FIG. 4. Theoretical �black� and numerical �gray� eigenvalue dis-
tribution for �=1.25.
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FIG. 5. Theoretical �black� and numerical �gray� eigenvalue dis-
tribution for �=1.00.
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��� =
1

�2W
−�

�

dz
W

−�

�

dx
f�z,x�

�z − ��z − x�
. �50�

A question is when this exact expression for ��� is equal to
the mean-field solution: �̂��= f� ,�. Recall the Poincaré-
Bertrand theorem. It tells us that the following equation
holds:

f�,� =
1

�2W
−�

�

dz
W

−�

�

dx
f�z,x�

�z − ��z − x�

−
1

�2W
−�

�

dx
W

−�

�

dz
f�z,x�

�z − ��z − x�
. �51�

We see that the density ��� is given by the mean-field re-
sult: ���= �̂��� f� ,� if the second term on the right-
hand side of Eq. �51� vanishes. Unfortunately we have not
managed to show that this is really the case for f�z ,x�
=L�/2

C�z�,��z��x�. One can, however, trivially observe that it
would be the case if f�z ,x� had the following form: f�z ,x�
= f�x ,x�=L�/2

C�x�,��x��x�, and probably also if f�z ,x� were a
slowly varying function of z for z close to x, in which case
the integral �48� would pick up only the contribution from
f�x ,x� leading to Eq. �46�.

III. FREE RANDOM LÉVY MATRICES

A. Rotationally invariant measure

Clearly Wigner-Lévy matrices are not rotationally invari-
ant. In this section we shall discuss orthogonally �or unitary�
invariant ensembles of Lévy matrices. It can be shown that
maximally random measures for such matrices have the form
�9,14�:

d�FR�H� = �
i�j

dHije
−N Tr V�H�. �52�

We shall be interested only in potentials which have tails
which lead to eigenvalue distributions �spectral densities�
with heavy tails ����−1−� belonging to the Lévy domain
of attraction. A generic form of V�� at asymptotic eigenval-
ues  is in this case

V�� = ln 2 + O�1/�� . �53�

In general the potential does not have to be an analytic func-
tion. We shall be interested here only in stable ensembles in
the sense that the spectral measure �52� for the convolution
of two independent and identical ensembles has the same
form as the measure of the individual ensembles. In other
words, the spectral measure for a matrix constructed as a
sum of two independent matrices taken from the ensemble
has exactly the same spectral measure �eigenvalue density�
modulo linear transformations.

It turns out that one can classify all the stable spectral
measures thanks to the relation of the problem to free prob-
ability calculus. The matrix ensemble �52� is in the large N
limit a realization of free random variables �9�, so one can
use theorems developed in free random probability �8�. In
particular we can use the fact that in free probability theory
stable laws are classified. They actually parallel stable laws
�3� of classical probability theory. In free probability the ana-
log of the logarithm of the characteristic function �3� is the
R-transform, introduced by Voiculescu �15�. The R-transform
linearizes the matrix convolution, generating spectral cumu-
lants, which are additive under convolution.

B. Stable laws in free probability

The remarkable achievement by Bercovici and Voiculescu
�8� is an explicit derivation of all R-transforms defined by the
equation R�G�z��=z−1/G�z�, where G�z� is the resolvent for
all free stable distributions. We just note that R�G�z�� is a
sort of self-energy for rotationally symmetric FRL ensembles
which is the analog of Eq. �13� which we previously defined
for Wigner-Lévy ensembles. It is self-averaging and additive.

For stable laws R�z� is known. It can have either the
trivial form R�z�=a or

R�z� = bz�−1, �54�

where 0���2, b is a parameter which can be related to the
stability index �, the asymmetry parameter �, and the range
C known from the corresponding stable laws �3� of classical
probability �8,16�

b = �Cei��/2−1��1+��� for 1 � � � 2

Cei��+�/2�1+���� for 0 � � � 1.
�

In the marginal case: �=1, R�z� reads

R�z� = − iC�1 + �� −
2�C

�
ln Cz . �55�

The branch cut structure of R�z� is chosen in such a way that
the upper complex half plane is mapped to itself. Recalling
that R=z−1/G in the large N limit, one finds that for the
trivial case R�z�=0, the resolvent G�z�=z−1, and the spectral
distribution is a Dirac delta, ���=���. Otherwise, on the
upper half-plane, the resolvent fulfills an algebraic equation

bG��z� − zG�z� + 1 = 0, �56�

or in the marginal case ��=1�:
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FIG. 6. The line represents the function �̂��0� �Eq. �47�� while
the circles represent the values of ���0� computed numerically for
�=1.0, 1.25, 1.5, 1.75, 1.95, and 2.0 from Eq. �27�.
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�z + iC�1 + ���G�z� +
2�C

�
G�z�ln CG�z� − 1 = 0. �57�

On the lower half-plane G�z̄�= Ḡ�z� �8�.
The equation for the resolvent �56� has explicit solutions

only for the following values: �=1/4, 1 /3, 1 /2, 2 /3, 3 /4,
4 /3, 3 /2, and 2. In all other cases the equation is transcen-
dental and one has to apply numerical procedures to unravel
the spectral distribution. Again the form of the potential gen-
erating stable free Lévy ensembles is highly nontrivial and is
only known in a few cases �9�. We refer to �9� for further
references and discussions.

C. Comparison of free Lévy and Wigner-Lévy spectra

We present in Figs. 7–11 several comparisons between the
free random Lévy spectra �FRL� following from the solution
to the transcendental equation �gray� and the random Lévy
spectra �BC� obtained by solving the coupled integral equa-
tions �black�, for zero asymmetry ��=0� and different tail
indices �. The FRL spectra are normalized to agree with the
BC spectra in the tails of the distributions. We recall that the
FRL spectra asymptote ����sin��� /2� /�. The compari-
son in bulk shows that the spectra are similar, in particular
close to the Gaussian limit �=2, where both approaches be-
come equivalent. For smaller � there are differences.

WL and FRL matrices represent two types of random ma-
trices spectrally stable under the matrix addition. For the WL

matrices it follows from the measure, since each matrix ele-
ment is generated from a stable Lévy distribution and there-
fore the sum of N WL matrices, scaled by 1/N1/�, is equiva-
lent to the original WL ensemble. The important point is that
the WL measure is not symmetric while the FRL one is.

IV. SPECTRAL STABILITY AND MAXIMAL
ENTROPY PRINCIPLE

The matrix ensembles discussed in this paper are stable
with respect to matrix addition in the sense that the eigen-
value distribution for the matrix constructed as a sum of two
independent matrices from the original ensemble H=H1
+H2 is identical as the original one up to a trivial rescaling.
Wigner-Lévy matrices are obviously stable, since the prob-
ability distribution for individual matrix elements of the sum
Hij =H1,ij +H2,ij is stable. A sum of two Wigner-Lévy matri-
ces is again a Wigner-Lévy matrix. The Wigner-Lévy matri-
ces are not rotatationally invariant. This means in particular
that the eigenvalue distribution itself does not provide the
whole information about the underlying matrix ensemble. In-
deed, if O is a fixed orthogonal matrix, and H is a Wigner-
Lévy matrix, then the matrix OHOT is not a Wigner-Lévy
matrix anymore but it has exactly the same eigenvalue dis-
tribution as H. In other words, an ensemble of Wigner ma-
trices is not maximally random among ensembles with the
same eigenvalue distribution. One expects that a maximally
random ensemble with the given spectral properties should
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FIG. 7. WL �black� versus FRL �gray� for �=1.95.
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FIG. 8. WL �black� versus FRL �gray� for �=1.75.
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FIG. 9. WL �black� versus FRL �gray� for �=1.50.

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

λ

ρ
(λ

)

FIG. 10. WL �black� versus FRL �gray� for �=1.25
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be rotationally invariant. In this case one also expects that
the stability holds not only for the sum H=H1+H2 but also
for the sum of relatively rotated matrices: H=H1+OH2OT,
where O is an arbitrary orthogonal matrix. It can be shown
�14� that the ensemble of random matrices which maximizes
randomness �Shannon’s entropy� for a given spectral density
has the probability measure exactly of the form �52� as dis-
cussed here.

Stable laws are important because they define domains of
attractions. For example, if one thinks of a matrix addition
one expects that a sum of many independent identically dis-
tributed random matrices H=H1+ ¯ +Hn should for n→�
become a random matrix from a stable ensemble.

Maximally random spectrally stable ensembles which we
discussed in the section on free random matrices play a spe-
cial role since they can serve as an attraction point for the
sums of IID rotationally invariant matrices. Moreover, one
expects that even for not rotationally invariant random ma-
trices Hi, the sums of the form B=O1H1O1

T+ ¯ +OnHnOn
T

where Oi are random orthogonal matrices, will for large n
generate a maximally random matrix B from a spectrally
stable ensemble. In this spirit one can expect that if ones
adds many randomly rotated Wigner-Lévy matrices,

B =
1

N1/��
i

N

OiAiOi
T, �58�

that for N→� the matrices B should become rotationally
invariant, maximally random with a distribution governed by

the FRL symmetric distribution. In Figs. 12–14 we show that
this is indeed the case. The plots illustrate the two types of
stability discussed above. In each case we generate N=100
WL matrices and combine N=100 of them either as a simple
sum �black� or a rotated sum �gray� with the appropriate
scale factor. The plots represent the numerically measured
spectra for the two cases. We present results for �=1.5, 1.25,
and 1, which all show that a simple sum reproduces the BC
result, while the rotated sum reproduces the symmetric FRL
distribution.

V. CONCLUSIONS

We have given a detailed analysis of the macroscopic
limit of two distinct random matrix theories based on Lévy
type ensembles. The first one was put forward by Bouchaud
and Cizeau �7� and uses a nonsymmetric measure under the
orthogonal group, and the second one was suggested by us
�9� and uses a symmetric measure.

After correcting the original analysis in �7�, in particular
our formulas �23� and �21� replace �10b� and �12b� in �7�,
and their Eq. �15� is replaced by the pair of “dispersion re-
lations” �22� and �27�, we found perfect agreement between
the analytical and numerical spectra. The WL measure is
easy to implement numerically for arbitrary asymmetry pa-
rameter � in the Lévy distributions. The spectrum of WL
matrices does not depend on � and remains symmetric and
universal, depending only on �.
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FIG. 11. WL �black� versus FRL �gray� for �=1.00.
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FIG. 12. WL �black� versus FRL �gray� stability for �=1.5
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FIG. 13. WL �black� versus FRL �gray� stability for �=1.25.
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FIG. 14. WL �black� versus FRL �gray� stability for �=1.
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We have also shown that the spectra generated analyti-
cally for symmetric FRL matrices are similar to the ones
generated from WL matrices. Unlike the WL ensemble, the
FRL ensemble allows for both symmetric and asymmetric
Lévy distributions. Both ensembles are equally useful for
addressing issues of recent interest �17,18�.

Let us finish the paper with two remarks.
�1� The application of free probability calculus to asymp-

totically free matrix realizations allows one to derive spectral
density of the matrices from the underlying matrix ensemble
but it does not tell one how to calculate eigenvalue correla-
tion functions, or joint probabilities for many eigenvalues.
Actually different matrix realizations of free random vari-
ables may have a completely different structure of eigen-
value correlations even if they are realizations of the same
free random variables. To fix correlations or joint probabili-
ties for two or more eigenvalues, one has to introduce the
concept of higher order freeness �19�. We think, however,
that if one imposes on a matrix realization of free random
variables an additional requirement that it has to be maxi-
mally random in the sense of maximizing Shannon’s entropy
�14�, then this additional requirement automatically fixes the

probability measure �52� for the ensemble and thus also all
multieigenvalues correlations.

�2� Large eigenvalues behave differently for Wigner-Lévy
and maximally random free random Lévy matrices discussed
in this paper. As pointed out recently �13�, the largest eigen-
values fluctuate independently for a Wigner-Lévy ensemble,
a little bit like in the mean-field argument �7� mentioned
before, while for the maximally random matrix ensemble
�52� even large eigenvalues are correlated �9�.
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